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A method is introduced to analyze the degeneracy properties of the band structure of a photonic crystal by
making use of supercells. The band structure associated with a supercell of a photonic crystal has degeneracies
at the edge of the Brillouin zone if the photonic crystal has some kind of point group symmetry. The
E-polarization andH-polarization cases have the same degeneracies for a two-dimen&@)aphotonic
crystal. Two theorems on degeneracies in the band structure associated with the supercell are given and proved.
These degeneracies can be lifted to create photonic band gaps by changing the translation group symmetry of
the photonic crystalthe point group symmetry of the photonic crystal may remain unchangddch conse-
quently changes the transform matrix between the supercell and the smallest unit cell. The existence of
photonic band gaps for many known 2D photonic crystals is explained through the degeneracy analysis. Some
structures with large band gaps are also found through the present degeneracy analysis.
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[. INTRODUCTION polarization are usually considered separately as suggested in
[12,18. It is complicated to predict where the degeneracy
Photonic crystals, which are periodic arrangements of diappears and how to break the degeneracy.
electric or metallic materials, have attracted wide attention In some cases, we do not have to rely on such an analysis.
recently in both the physics and engineering communities idn the present paper, we introduce a method to create degen-
view of their unique ability to control light propagation €racies first and then break them to create band gaps by
[1-4]. Many potential applications of photonic crystals rely Studying the band structure associated with a supefirell
on their photonic band gag®BGS. It is thus of great inter- stead of the unit cell as considered by others in the literature

est to design photonic crystals with an absolute band gap 48€ntioned before In the band structure associated with a
large as possible, particularly for a given dielectric material SUPercell, we can analyze how degeneracies are formed and

Two-dimensional(2D) photonic crystals have attracted hov_l\_lhto brgz%[k them to creatte b?nd ﬁa{as.' tal is defined
special attention since they are easier to fabricate. Many 2D € point group symmetry of a photonic crysta’ 1S define

photonic crystals with large absolute band gaps have bee\(f_gvith respect fo the point with the highest symmetry. For
found [5-7]. A rule of thumb based on the difference be- xample, the point group symmetry is not changed by adding

L . . . columns at the corners of the unit cell for the 2D photonic
tween the filling factors (_)f tr_le dlelectrlc.band and the a'rcrystals considered ifil5] (they belong to the same point
band (relatgd to the distribution .of the displacement f)eld roup symmetryC,,). We notice that the translation group
can sometimes .be used to explain the band gaps, particular, mmetry does not change either. Thus the space group sym-
at low frequencie$3,8]. Because of the complication of the \etry of the photonic crystal does not change at all although
differential operators in electrodynamigifferent field com-  the smallest unit cell must include two rods after the addi-
ponents are coupled to each other even if the permittivittional rods are added. It may be hard to understand the de-
&(r) is separablg it is difficult to obtain analyticalleven  generacy breaking for thel polarization at point of the
approximatg solutions for the distribution of the displace- second and third bandss shown in[15]) without careful
ment field(particularly at high frequencigsTherefore, many analysis of the electromagnetic field distribution. However, if
photonic crystals with large absolute band gaps cannot b&e study the band structure associated with a supercell, the
explained or found by the rule of thunjt0,11,15. liting of the degeneracy and the creation of PBGs of such
Degeneracy lifting is another explanation for absolutephotonic crystals can be understood with some tricks even
band gaps and even a method to create band [dapsl7.  when the space group symmetry of the photonic crystal does
The degeneracy can be lifted by, e.g., using hexagonal phaot change. For the above example, the photonic crystal with
tonic structures[12], using anisotropic materialgl3,14], additional columns at the corners can be treated as the result
breaking the space group symmeftiys, 16, or changing the of changing the translation group symmetiyeeping the
dielectric distribution without breaking the space group sym-point group symmetry unchangedrom another photonic
metry[17]. Both accidental and normal degeneracies can exerystal with additional columns having the same size as the
ist in a photonic band structufsee, e.g.[17]; this is differ-  original column[as shown below in Fig.(3) for the square
ent from an electronic systenmo investigate the degeneracy column casg which also belongs t€,, point group sym-
properties of 2D photonic crystals, tiepolarization andH ~ metry. The present method provides another view for under-
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standing the idea of additional columns. Not surprisingly,
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corresponding reciprocal lattice vectors. We denote the first

many known photonic crystal structures such as the ches®rillouin zone formed by the reciprocal vectdiG'} as zone

board structurg19,20, a square lattice of square rofkl],

and even a triangular air hole structi8d can be somewhat
understood from this point of viewcf. the numerical ex-
ample associated with Figs. 3—6 be)ovBy using such a

degeneracy analysis associated with a supercell, some struc-
tures with large band gaps are also found in the present pa-

per.

Il. THEOREMS FOR DEGENERACIES IN THE BAND
STRUCTURE ASSOCIATED WITH A SUPER CELL

The unit cell we consider here refers to the smallest peri
odic region in a photonic crystal. If the periodic region in-

B.

LemmaThere exist a subséG!} of {G'}, which satisfies
the following conditions.
(i) {G}C{G'} and{G}N{G}=0.
(i) There areM elements in the s€iG} (M is the deter-
minant of the matrixN) and the difference of any two of

them does not belong G}, i.e., G,—G,) ¢ {G}.
(iii) Any G’ € {G'} can be expressed as

G'=G+G, (4)

whereG e {G},Ge{G}.

cludes more than one unit cell, e.g., two unit cells, itis called  The proof and a way to find the sgB} are given in the
a supercell. First we want to study the relation between the\pendix.

band structure associated with the supercell and the original” |f \we define the addition of vectors as multiplication in

band structuréassociated with the unit cell

In general, we consider a three-dimensidi@®) photonic
crystal with primitive lattice vectors;, a,, andas. The as-
sociated primitive reciprocal vectobs, b, andb; are deter-
mined by

3
j;l Eijkajxak

ay- (X ag)

where €;; is the 3D Levi-Civitacompletely antisymmetric

symbol. The complete set of reciprocal lattice vectors is writ-

ten as{G|G=I;b;+1,b,+1I3bs}, where (y,1,,13) are inte-

gers. We denote the first Brillouin zone formed by these re-

ciprocal lattice vector$G} as zone A.

The primitive lattice vectors for a supercell are the linear
combinationgwith integer coefficientsof the primitive lat-
tice vectors for the unit cell, i.e.a’izEleNijaj y ]
=1,2,3, wherel;; are integers. The corresponding primitive
reciprocal vectors for the supercell are determinedbpy
=2m(3} 1€ X a)/[ag- (a5 x a3)]. The integersN;;
form a 3X 3 transform matrix with a positive determinant

det(N)=M>0.
Since
3
Zl €imn@mX 8, 3
bi'a.j:27T a1~(a2><a3) .|:]_ Nl|a|:27TNl| (2)

it follows from a’j-b’;=2m§;; that

TR
Dy

3 3

bi=2>, Njb/=2> N 3
=1 =1

where the superscrifit denotes the matrix transposition. The
set of reciprocal lattice vectors associated with the superce
is {G'|G'==7_1n;b’}}. Since  G=32 |nb
==},_;niN{ib’;, one sees thafG} is a subset ofG'}.
Note that the elements ¢f5} and{G’} are the integer grid
points (they do not fill any continuous spacrmed by the

group theory, we can takfG'} as a group andG} as a
subgroup. Then the vect0ris the unit element of the group.
From group theory, one knows thiB'} is the union of all

the cosets of the s¢G}. The subse{G} is used to give the
cosets.

With these reciprocal vectors, each eigenstate of the elec-
tromagnetic field componeid, (with the wave vectok in
the first Brillouin zong in the photonic crystal can be ex-
pressed in terms of the following Bloch serid®]:

Hk(r):e””%: Hge'®. (5)

The field componentd, satisfies the following equation:

wg

OH=— H,,
k=52 "k

©6)

where the operatd® can be easily derived from Maxwell’'s
equations, and is the speed of light.

For any wave vectok in thek space of a photonic crys-
tal, one can find a wave vector in the first Brillouin zone that
has the same eigenstate. The difference between the two
wave vectors should be a reciprocal vector. Therefore, for
any wave vectok, there exists & e {G} so that

is in zone A(associated with the unit cgind aG’' € {G'} so
that
ko,=k—G’ ®)

is in zone B(associated with the supergelWe callk; (in
zone A the counterpoint ok, (in zone B for the same
photonic crystal. They denote the same eigenstate in the re-
ﬁiprocal vector spaces associated with the unit cell and the

supercell, respectively.
For a fixedk, € B, we define the seK4|K,=k,+G, for
all Ge{G}l,. Clearly, there aré/ elements infK;}. Since

not all of theseM elements are in zone A, we can force each
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of them inside zone A by subtracting an appropriate recipro-
cal vectorGKle{G}. Thus, we define a sefk,|k,=K;
=K;1=Gg, in A for all Kye{K}yjk,. Obviously {ki}y,
containsM points inside zone A. ik G
Theorem 1 =e? E Hge™ "=Hy (1), (11)
(i) The M elements infk,},, are the counterpoints . G
They areM different points in zone A.
(i) All M eigenstates witiM wave vectors ik}, (as-

— eik2~r2 HGei(G+G+GZ)-r
G

WhereH,L2 is the same eigenstateith the same field distri-
. . . . i bution) but for the wave vectdk, in zone B(associated with
sociated with the unit cellcorrespond taV eigenstates with the supercell Therefore, alM eigenstates witM wave vec-

one wave vectok, i_n zone B(associated with the_ superQeII tors in {ky},. (associated with the unit cgltan be repre-
(iii) Each band in the band structure associated with the ted b 2. tat ith . A

unit cell will split into M bands in the band structure associ- sented W elgenstates with one wave _veclq_{ In zone

ated with the supercell (associated with the supergelllhe M points ofk; on any

Proof. For any wave vectok in k spacek, andk, are the band in the band structure associated with the unit cell will
counterpoints in zone A and zone B, respectively. From Eqs2€ °NM bands for onek; value in the band structure asso-

(4), (7), and(8), one has ciated with the supercell. Generally speaking, one band in
T ' the band structure associated with the unit cell will split into
k=k,+G'=k,+G, (99 M bands(which may overlap partially and form degenerate
eigenstatesin the band structure associated with the super-
k,=k,+G'—G cell. The theorem is thus proved.

Theorem 2If a photonic crystal has some kind of point
group symmetry, the eigenstates at the edge of the first Bril-

=ka#G+G,—G louin zone B will be degenerate in the band structure asso-
_ ciated with the supercell. The degree of the degeneracy de-
=k, +G+G; pends on both the determinaMt of the transform matrixN
and the point group symmetry of the photonic crystal.
=K1 +Gs. (10 Proof. For a wave vectok, at the edge of zone B, in

addition tok;=k,+ 0 (corresponding t<§1=0) being one
of its counterpoints at the edge of zone B, it may have an-
other counterpoint; =K, — Gk, (with K;=k,+ G,) located

Sincek; is in zoneA, it follows from the definition thak,

e{kl}k2 (hereGy = —G,). Therefore, for any wave vector
which has a counterpoirk, in zone B, its counterpoint in —
zone A must belong tle}kz- On the other hand, all the somewhere else at the edge of zone B. For non@anly

. . , . those points at the edge of zone B may have counterpoints
elements 'n{kl}kz for all possibleG" (corresponding to al still at the edge of zone B and the counterpoints for those

possibleG e {G}) in Eq. (10) are all counterpoints ok,. points inside zone B will be outside zone(But still inside A
Therefore, the elements in the 4ét}, are exactly all the according to the definition of counterpoints; note that zone B
counterpoints oks,. is inside zone A The wave vectorg; andk; correspond to

we haveK ,=k,+ G, andK,=k,+G,. From the definition perc;ell. Sometimes there exists a s_ymmetrlc qperaﬁon

= < = = (which can be represented by a matrix for coordinate trans-
we haveK; —K,=K;— Gy, =(K2=Gy,)=G1=G2=(Ck;  formation; then one has = aT) and the associated opera-
—Gg,). Since G,—G,«{G} and GKl—GKze{G}, we  tor T(a) [with T(a)f(r)=f(a r)] for the photonic crystal
such that akij=k,; and T(a)@(r)=0(a r)T(a)
=0(r)T(a). Assume thaH K and Hki are the eigenstates
for these two wave vectors, i.eﬁ)Hkl=wﬁ1/c2Hkl and

OHy, = wig/c’Hy;. Since

know that G;—~G, and G —Gy, are different, i.e.,G,
—G,—(Gk,~Gk,)#0, which immediately givek;—K,
#0. This proves thakK,; andK, are two different points in
zone A. Therefore, the elements {k,},, are M different

points.
Let H, be the eigenstate for a wave vector in the set

{kl}k2 associated with the unit cell. From EdS) and(10),

T(@Hig(N)=Hu (a1 =Hu(N=Hy (1), (12

one has we have
21
. . w
Hkl(l’)=e'k1'r2 HGelGAr @Hkl=®T(C¥)Hk'=T(OZ)®Hk71= %T(Q)Hk’l
G 1 c
5 w1
:ei(k2+G+Gz)~r% HGeiG‘r — ?Hkla (13
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FIG. 1. A 1D photonic crystal consisting of alternating layers of @ ka/2n

two different materials(a) The supercellincluding two unit cell$
of the photonic crystakb) The symmetry of the supercell is broken ~ [——————====- ===
(by changing the widths of the two dielectric layers while keeping 08 --C e
the positions of both unchangetb form a unit cell for a new
photonic crystal.

we havewklz Wy ThereforeH K, andei are two different g _________________________
eigenstategfor different wave vectork; andk;) with the g B

same eigenvalue. In the band structure associated with th o4 o ———— ]
supercell, these two eigenstates are located at two bands b

have the same wave vectdér, and the same eigenvalue. 0.8
Thus, they are degenerate states. Since we do not assume a
specific form for® in the above proof, the theorem is valid

in any dimensional spadand for any polarization in the 2D 0.1
case.

In the next section, we will illustrate these degeneracy 3
theorems with some numerical examples, use the degenerad®)
analysis to explain PBGs for some known 2D photonic crys-
tals, and create large band gaps by breaking the symmet
properties of the photonic crystal.

r FIG. 2. The corresponding band structures of the 1D photonic
é?ystals withe,;=13,e,=1. (a) The solid lines are for the band
structure associated with the unit cell and the dashed lines give the
band structure associated with the supercell. Here we chbose
1. NUMERICAL RESULTS =2a andd=0.5a for Fig. 1(a). (b) The solid lines give the band
structure for a new photonic crystal with the unit cell shown Fig.
First we give a one-dimensional example. Figure 1 is ai(p) (here we choosd,=0.3a andd,=0.7a). The dashed lines are
1D photonic crystal consisting of alternating layers of mate<for the band structure for Fig.(d before the symmetry of the
rials with two different dielectric constants{=13 ande, supercell is broken.
=1). We can select a periodic regi¢m supercejlto include
two unit cells as shown in Fig.(4). The band structure as- zone B, the two wave vectork;=0.25(27/a) and
sociated with the unit cell and the band structure associateld, = —0.25(2m/a) = ak; correspond to the same wave vec-
with the supercellwith N=2) are given in the same figure tqr k,=—0.25(2m/a) (note thatk,+ 61: ky, Ko+ Ezzki)_
[Fig. 2@)], where the frequency and the wave vector arethys, these two eigenstates are degenerate in the band struc-
normalized with the same constaat=1 in order to make tyre associated with the supercell. Each eigenstaté at
them comparable. For this case, we had&l={G,G,} ==*0.25(27/a) is formed by two degenerate states in the
={0,0.5(2r/a)} andM =2. From Fig. Za) one sees that the band structure associated with the supercell. If one breaks the
eigenvaluegassociated with the original unit celfor the  point group symmetry with respect to the center point of the
wave vectors outside the first Brillouin zone (Bssociated supercell of the photonic crystal by changing the size of the
with the supercellhave their counterpoints in zone B in the inclusion medium, one obtains a new photonic crystal as
band structure associated with the supercell. As expectedhown in Fig. 1b). Sine the resulting photonic crystal iss
each band(solid line) associated with the unit cell corre- still mirror symmetric with respect to the center point of an
sponds to two band&lashed linegsassociated with the su- inclusion layer, the symmetry breaking with respect to the
percell. Since the center point of the supercell in Fige)1 center point of the supercell does not change the point group
is mirror symmetric, one hasx=-—1. At the edge of symmetry of the photonic crystal as a whole. However, the
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a

©a/(2nc)

(a) (b)

(©)

FIG. 3. The case for the square lattice of square dielectric rods.
(a) The supercell including four unit cellgh) The symmetry of the
supercell is broken as two square rods increase in size and the othel
two rods decrease in size. The symmetry-broken supercell is
marked by the thick solid linesic) The first Brillouin zone A
(marked by the dashed lineassociated with the original unit cell
and the first Brillouin zone Bmarked by the solid lingsassociated
with the supercell ofa). The first Brillouin zone C associated with
the new unit cel[marked by the dashed lines @f)] of the new
photonic crystal ofb) is marked by the dotted line§., X,J,M are
the symmetry points.

wa/(2nc)

translation group symmetry changes due to the symmetry
breaking, and this leads to a larger unit cell. The correspond-
ing transform matrix between the supercell and the new unit
cell changes fromN=2 to N=1. The band structure is
shown by the solid lines in Fig.(B), where one sees that the
degeneracy disappeatsince M=1 for this new photonic
crystal and consequently there is only one counterpoint for g
each wave vector in the Brillouin zopand more band gaps §
appear.

For the 2D case, if the dielectric inclusions have rectan- o0d
gular shapes, we can employ the plane wave expansion
method with the inverse rule1] to calculate the band struc-

ture. It is shown in21,22 that this method with 225 plane 02t =TVod
waves can give more accurate results than a conventional | = o
plane wave expansion method with even 1681 plane waves. i ©

In our calculations, we use this method with 289 plane waves % o7 oF o3 o4 o5 o5 o7 o8 o9 1
and the error in the band structure is less than 0.5%. B

As an example, we choosex2 unit cells as the super

T_(20 ; =~
cell. T,her,] V\{e h?VGN =(02), Whlch CorreSpor‘ds_téG} FIG. 4. The band structures associated with Fig. 3 for
={0b1,b; ’b1+_b2} (see the Append!x fora derlvatlon. for a =0.47g=8.9. The solid lines denote the polarization case and
general case Figure 3a) shows a simple square lattice of the gashed lines are for tiiepolarization case. They are calculated
square dielectric rods. Alumina is chosen as the dielectrigy the plane wave expansion methadth the inverse rulewith
medium and thuse=8.9. The filling factor is set tof 289 plane waves fa@) =0, i.e., a simple square lattice of square
=0.47. Figure 4a) gives the band structure associated withrods;(b) B=1, i.e., the case of the chessboard. The absolute band
the supercell. Each bar@ssociated with the unit cglhas  gapAw/w.=0.07 appears ab.=0.605(2rc/a). (c) The band gap
split into four bands in the band structure associated with thenap for O<p<1.
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supercell. The point group symmetry@s, . We use the two the two opposite edges in the Brillouin zone B are twofold
mirror symmetriesa;=(,*9) and a,=(§ ;) to analyze degenerate states under these two symmetry operations. The

the degeneracy here. The eigenstates with wave vectors @ggeneracy becomes only twofold at poiktandM now (as

the four cornerge.g., pointsX andM) of the Brillouin zone ~ compared to the fourfold degeneracy in the band structure
B have fourfold degeneracy and the eigenstates with wavssociated with the super_oed;l|nce|NT|=2 here. Therefore,
vectors on two opposite edges are of twofold degeneraci® degeneracies must disappear atXhendM points and
under these two symmetry operations. Thus, in the ban§ach group of four bands in Fig(a} breaks at pointX and
structure associated with the supercell one can see that thelg© form two groups with two bands in each grdigee Fig.

are four-fold degeneracies at tieand M points and there )]. An absolute band gap w/w.=0.070 appears at the

are also twofold accidental degeneracies for the four spligldferegg:;%gggﬁ dbar;d ga?;)n:b“éc:)?'?:igéﬁﬂg/a)thgheres ent
bands(and thus one sees only three baniasthe regionl’ g 9ap P y P

o o o theory of supercells.
—X. The E polarization and théd polarization have similar : - ; -
behaviors of degeneracy. Figure 4c) is the corresponding gap map whe¢hin

In th Il both the si d th i f th creases from O to 1. The situation is similar to the case
n the supercell, bo € siz€ an € position OF €., sidered i15] (the only difference is that here we use

inclusions can be changed to break the point symmetry Wiﬂ% uare dielectric rods instead of round air hpl&® make a
respect to the center p(_)int of the_supercell. Since th_e ban ap for the actual procedure of degeneracy breaking, we
o1 the mclusions will nflaence.the band syueture sgnif BXE 8 5 the varying parameter. A photonic crystal with
cantly. In our first example, the symmetry is broken as twoadd't.Ional s_maller squares @8<1.; we call it case Ris

' . e considered if15] as a result of adding the smaller squares to
square rods increase in size and the other two rods decrease

AL - corners of the square lattice of the square rods-(; we
In Size in ordgr to keep the filling factdr:0.47 u.nchanged. call it case 3. Here, we take both case 2 and case 3 as the
In the resulting photonic crystal shown in Fig(bB the

squares rotate through a 45° angle to form a Chessboarrgsults of changing the translation symmetry of the photonic

structure in the new unit cell denoted by thickened lines incrystal when the additional square is of equal size-0; we

) . : . call it case 1. They have the same degeneracy breaking
Fig. 3b) after the symmetry is broken. The ratio of the S'.de roperties as the chessboard structure mentioned above.
lengths between the smaller rods and the larger rods is

B with 0=B=1. When 0< <1, it is just the case with hus, large absolute band gaps can be expected by choosing

the smaller square rods being added at the corners of than appropriate value g8. When3=0.76, an absolute band

. ; ~ ) geap appears arounol=0.6(2mc/a). It is more useful to use
simple unit cell. Wheng=1, the side length of the smaller Awl/w. to describe the PBGs due to the scaling property of a

structure is exactly the chessboard structure reporté20i ephotonic crystal. In the band structure associated with the
X y . P " . _supercell,Aw/w; remains almost unchanged. A maximum
Since the symmetry with respect to the center point

(which has the highest symmelrgf each square is stilC,, Aw/w:=0.071 occurs whef=0.93,

. 4 Following the same procedure, from the chessboard pho-
for 0<B=<1 [see Fig. )], the point group symmetry of the : P, . .
photonic crystal is stillC,,. Similar to the 1D case, the tonic crystal shown in Fig. &) we can obtain a photonic

. : ; crystal formed with square dielectric rods of two different
symmetry breaking with respect to the center point of the_}sizes[see Fig. B0)]. The ratio of the side lengths between

supercell changes the t_ranslation symmetry of the photonlﬁ1e smaller rods and the larger rods is & with 0<g<1.
crystal. The correspondlng transform matNxbéatoween t?e Figure 6 gives the gap map when the filling ratio is fixed to
iUplegce” and the.umt cell changes frdwi=(; 2) to N f=0.35 with 0<B<1 and the inclusion material has a di-
=(p ~1) as the unit cell changes to a larger one. Thereforeg|eciric constant = 11.4. From Fig. 6, one sees that there is
the degeneracies of the band structure associated with the) Jsolute band gap for the chessboard ¢aden g=0)
supercell will also cha_nge. We take the chess_boﬁ_lfell) aS  in the frequency range of @w<2mc/a. When =1, the

an example to study its band structiishown in Fig. 4b)].  srycture becomes a simple square lattice of square rods of

From Fig. 4b) one sees clearly that some degeneralies o same sizésee Fig. %], which has an absolute band
cluding the usual degeneracies at the edge of zone B and tfé%p Awlw,=0.0453 with the midfrequency w,

accidental degeneracies for pointdaX) are lifted for both =0.7231(2rc/a). It is thus not surprising that with appro-

the E polarization and théd polarization. An absolute band priate parameters an absolute photonic band gap exists for

gap appears where the degeneracies are lifted at the edgg, op square lattice of square dielectric rods as considered
points of zone B. To understand this situation, after the unit, [11]. The maximal gap of\ w/w,=0.0717 (much larger
. -=0.

cell of the photonic crystal in Fig.(B) changes to a larger hap in the case of inclusions with a single $izecurs at
one[denoted by the dashed line in Figb3|, the correspond- w=w,=0.7449(27c/a) when the ratio of the size lengths
ing first Brillouin zone of this new photonic crystal is de- for the two inclusion rods ig$=0.31

noted as zone C in Fig.(®. The transform matrix between A triangular lattice of air columngsee Fig. Tb)] has been

zone C and zone A 'N_T:(lfl 1), which corresponds M 5 1o have a large absolute band gap. The rule of thumb
=detN")=2{G}={0,b;} ={0,b5} according to the Appen- [2] can be employed to give a reasonable explanation. Here
dix. For the point group symmetry &,,, we can analyze we explain how a gap appears from the viewpoint of the
the degeneracy with the two mirror symmetry operai®ss changes of translation symmetry. Although the triangular lat-
=a; anday= a,. The eigenstates with two wave vectors ontice has high symmetry, it can be viewed as the result of
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( ) FIG. 7. The case for a rectangular lattice of air holes. The ratio
FIG. 5. The case of the chessboard struct(@eThe supercell  of the two side lengths i§'3. (a) The supercell including four unit
including four unit cells(b) The symmetry of the supercell is bro- cells. (b) The symmetry of the supercell is broken when two diag-
ken when two square rods increase in size and the other two squag@al air holes are reduced in size to zero and the other two diagonal
rods decrease in siz&) The photonic crystal when the size of the air holes increase in size. The symmetry-broken supercell is marked
smaller square rods becomes zero. The structure becomes a simpi the thick solid lines(c) The first Brillouin zone A(marked by
square lattice of square rods. the dashed lingsassociated with the original unit cell and the first
Brillouin zone B (marked by the solid lingsassociated with the
symmetry breaking from a supercell of another photonicsupercell of(a). The first Brillouin zone C associated with the new
crystal shown in Fig. @&). From Figs. 8) and 8b) we can unit cell [marked by the dashed lines @f)] of the new photonic
see clearly how the degeneracies are lifted at the edge poinggstal of (b) is marked by the dotted line§.,X,J,M are the sym-
X andM [cf. Fig. 7(c)] and an absolute band gap is created inmMetry points.
the band structure associated with the supercell when the ) o o
symmetry of the supercell is broken. =0.374f=0.5132 is shown in Fig. 10. From this figure one
As a final numerical example, we break the symmetry ofSées that the degeneracies are lifted at the edge points and
the supercell shown in Fig.(8 by changing both sizeor  two absolute band gaps are created at higher normalized fre-
all nine square rodsand positions(except for the central duencies, namely, a large gapw;=0.072(2rc/a) at w.
square roylof the square rods, but with the dielectric filling =1.291(2rc/a) and another gapAw,=0.043 at w
factorf fixed. Figure 9b) is the resulting structure. The band =1.142(2rc/a). Note that it is easier to fabricate a photonic

structure  with  parameters p;=0.194,p,=0.236G,p;  Crystal with the absolute band gap occurring at a higher nor-
malized frequency.

[~ —_— IV. CONCLUSION

1> p—
o8 | In the present paper, we have presented a method of ex-
# plaining or creating photonic band gaps through analyzing
_ |

0.7 the degeneracy of the band structure associated with a super-

g 0‘6> cell. The band structure associated with a supercell of a pho-
3 tonic crystal has degeneracies at the edge of the first Bril-
S o5 <> 1 louin zone if the photonic crystal has some kind of point
0l | group symmetry. We analyzed these degeneracies and pre-
> sented two theorems on degeneracies in the band structure
o 1 associated with the supercell. These theorems and the analy-
02 ] sis are valid in any dimensional spa@ad for any polariza-
& TEmosd tion in the 2D caseand do not require investigation of the
o - Eth I field distribution. Photonic band gaps can be created through
0 - - . - - . - - - lifting these degeneracies by changing the translation group
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 . .
8 symmetry of the photonic crystal, which consequently

changes the transform matrix between the supercell and the
FIG. 6. The gap map for Fig. 5 with98<1 (1— B is the side smallest unit cell. Many numerical examples have been
length ratio of the smaller squares to the larger gnes given in the present paper to illustrate this. In the 2D case,
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0.4

wa/(2nc)

0.3~

| (a) (b)

D S/, : \ FIG. 9. Symmetry breaking of a supercell by changing both the
N\ /7 (a) AN sizes and positions of the inclusion®) The supercell including

J r X M r four unit cells.(b) The symmetry of the supercell is broken when

both the sizesfor all nine square rodsand the positiongexcept for

the central square rgpaf the square rods are changdait with the

dielectric filling factorf fixed).

0.1F

Technologies of Zhejiang provincial governmeuinder a
key project grant; Grant No. ZD00D5s gratefully acknowl-
edged.

wa/(2rc)

APPENDIX THE PROOF OF THE LEMMA
AND A METHOD TO FIND THE SET {G}

We can take three kinds of primary transformations for
the integer matrixN while keeping the absolute value of
det(N) unchanged. The first transformation is to multiply a
column or row by+1. The second transformation is to in-
terchange two columns or rows. The third transformation is
to add one column or row tk times another column or row

1.4

FIG. 8. Band structures calculated with the plane wave expan-
sion method(with 961 plane waves The relative permittivity for
the background medium ig=13. The solid lines denote the
H-polarization case and the dashed lines are forBipolarization
case.(a) The band structure associated with the supercell of Fig.
7(a). The radius of the air holes is=0.5a. (b) The band structure
associated with the symmetry-broken superdetlarked by the
thick solid line in Fig. Tb)]. The filling factor isf=0.836. The :
absolute band gap\w/w.=0.169 appears at midfrequenay, 0.6 S N S ________

wa/(2nc)

=0.4936(2rcla). e SETE

0.4: ) SR A -]
the E polarization and theH polarization have the same T T T T : -
properties of degeneracies. The existence of photonic ban | T il
gaps for many known 2D photonic crystals has been ex- . g
plained through a degeneracy analysis of the band structur ) s (b) : S
associated with the supercell. Some photonic crystal struc r X J r
tures with large or multiple band gaps have also been found

by breaking the symmetry of the supercell.

FIG. 10. The band structure associated with the symmetry-

broken supercell shown in Fig(l9 with f=0.5132 ande=11.4.

The solid lines denote thid polarization case and the dashed lines

ACKNOWLEDGMENTS are for the E polarization case. The other parameters pre
=0.194, p,=0.236, p;=0.374. Through the symmetry break-

We would like to express our thanks to Huiling Li for ing of the supercell, one obtains a band structure with two absolute

illuminating discussions. The partial support of the Nationalband gaps, namely, one gapAw;=0.0724 at o,

Natural Science Foundation of Chirjander a key project =1.2905(2rc/a), and another gapAw,=0.0427 at w,

grant; Grant No. 90101024nd the Division of Science and =1.1424(2rc/a).
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(k is an integer. Each primary transformation can be ex-
pressed with a left or right multiplication of the matiikby
an integer matrix. Furthermore, the determinants of these
integer matricegassociated with these primary transforma-
tions) are 1 and their inverses are also integer matrices. Un-
der these primary transformatiop®3], the determinant of
the matrix is kept unchanged and the resulted mairixis
still an integer matrix.

Here we give a specific procedure for obtaining a diago-
nal matrixN’ =D by taking these transformations. First, we
interchange the column or the row with the second kind of

PHYSICAL REVIEW E7, 026612 (2003

transformation to makeN,; the minimal amongN,; and
Ni,, i=1,2,3. Then we mak®l,; positive (if it is negative
with the first kind of transformation. If all the integeh;;
andN;; (i=1,2,3) are divisible byN7,;, we can make alNy;
andNj; (exceptN;;) zero by using the third kind of trans-
formation. If any ofNj; or N/; is not divisible byNj,, its
column or row can be subtracted frdatimesN,; so that the
remaining component at thi;; or N{; position becomes
smaller thanNj;. The column or row is then interchanged
with the first column or the first rowith N4;) to makeN;,
smaller. This can be done repeatedly untilNy| andN;, are
divisible by Ni; or N;;=1. Then we can make aM;; and
N;; but N3, zero. Applying a similar method thl5,, we can
makeNj;=N3,=0. Therefore, the integer matriX' is di-
agonalized as

N'=P !DQ,
(A1)
d 0 0
p=| 0 d, 0]
0 0 ds
whereD, P~1, Q are all integer matrices. Hefe ™! is the

inverse of P and detP !)=det(Q)=1. Thus, we have
det(D) =d,d,d;=det(NT) =M.
From Eq.(5) we have

3
i 2 ij J 2 (P~ 1DQ)IJ

(A2)

We can define two other basic vectobsand b’ by b
=37 P;b; andb/=37_,Q;b’;. Below we find{G} in
terms of the vectory; . It follows from Eqg.(14) that

(A3)

Since

we see that the séE>_n,b}={=3_,n;b]} (n;,n/ are arbi-
trary integers Similarly, we can show that

[inﬂ{]={él nibi’J.

Therefore, the set§G} and {G’} can be written as
{G|G=3_,nb=37_,mdb/} and{G'|G'=37_,n;b]}.

Since any integen; can be written a®;=1;d;+m, with
O=sm=<d;—1, we see that the sdiG|G=3> mb/,m,
=0,...d,—1}. Obviously, we havéG}N{G}=0 and there
ared,d,d;=M possible combinations ofif; ,m,,ms) for G
(i.e., the se{G} hasM elements Also, for any two of them,

(A6)

eg., G;=33,mb/,G,=3% m bI , O\m,<d 1,0
sm/<d;—1, the difference G;—G,=33,mb/

-33 .m'b/=3% (m—m/)b/ does not belong to{G}
since Os|mI m '|<d;—1.

Obviously, anyG’ e{G'} can be written as

(A7)

whereG e {G} andG e {G}.

As a numerical example in the 2D case, we can consider
the supercell indicated by the thick line in FigibB where
the unit cell is indicated by the dashed lifghe supercell
includes two unit cells Obviously, we hava’;=a; +a, and
a',=a;—a,. Then we haveNTz(l_l i). Following the
above procedure we obtainN"=(1; D=G 9GS
x(1*1> D=(59),P =G G:11). P=(111). Q"

=( 1. Therefore, we haved;=1,d,=2, and {G}
={0,b;}={0bs}. SinceG;— G,=b; in this special example
and we have the general form f@&=n,b;+n,b,=n,(b;
+b) +ny(—bi+Dby)=(ny—ny)bi+ (N1 +nz)b;, G1—G;
e{G} will end up with n;=n,=1/2 which is contradictory
to the requirement that; andn, are mtegers Therefore, for
this special example we also see t@at— G, ¢ {G}.
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