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Degeneracy analysis for a supercell of a photonic crystal and its application
to the creation of band gaps
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A method is introduced to analyze the degeneracy properties of the band structure of a photonic crystal by
making use of supercells. The band structure associated with a supercell of a photonic crystal has degeneracies
at the edge of the Brillouin zone if the photonic crystal has some kind of point group symmetry. The
E-polarization andH-polarization cases have the same degeneracies for a two-dimensional~2D! photonic
crystal. Two theorems on degeneracies in the band structure associated with the supercell are given and proved.
These degeneracies can be lifted to create photonic band gaps by changing the translation group symmetry of
the photonic crystal~the point group symmetry of the photonic crystal may remain unchanged!, which conse-
quently changes the transform matrix between the supercell and the smallest unit cell. The existence of
photonic band gaps for many known 2D photonic crystals is explained through the degeneracy analysis. Some
structures with large band gaps are also found through the present degeneracy analysis.
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I. INTRODUCTION

Photonic crystals, which are periodic arrangements of
electric or metallic materials, have attracted wide attent
recently in both the physics and engineering communitie
view of their unique ability to control light propagatio
@1–4#. Many potential applications of photonic crystals re
on their photonic band gaps~PBGs!. It is thus of great inter-
est to design photonic crystals with an absolute band ga
large as possible, particularly for a given dielectric mater

Two-dimensional~2D! photonic crystals have attracte
special attention since they are easier to fabricate. Many
photonic crystals with large absolute band gaps have b
found @5–7#. A rule of thumb based on the difference b
tween the filling factors of the dielectric band and the
band ~related to the distribution of the displacement fie!
can sometimes be used to explain the band gaps, particu
at low frequencies@3,8#. Because of the complication of th
differential operators in electrodynamics@different field com-
ponents are coupled to each other even if the permitti
«(r ) is separable#, it is difficult to obtain analytical~even
approximate! solutions for the distribution of the displace
ment field~particularly at high frequencies!. Therefore, many
photonic crystals with large absolute band gaps canno
explained or found by the rule of thumb@10,11,15#.

Degeneracy lifting is another explanation for absolu
band gaps and even a method to create band gaps@12–17#.
The degeneracy can be lifted by, e.g., using hexagonal p
tonic structures@12#, using anisotropic materials@13,14#,
breaking the space group symmetry@15,16#, or changing the
dielectric distribution without breaking the space group sy
metry @17#. Both accidental and normal degeneracies can
ist in a photonic band structure~see, e.g.,@17#; this is differ-
ent from an electronic system!. To investigate the degenerac
properties of 2D photonic crystals, theE polarization andH
1063-651X/2003/67~2!/026612~10!/$20.00 67 0266
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polarization are usually considered separately as suggest
@12,18#. It is complicated to predict where the degenera
appears and how to break the degeneracy.

In some cases, we do not have to rely on such an anal
In the present paper, we introduce a method to create de
eracies first and then break them to create band gaps
studying the band structure associated with a supercell~in-
stead of the unit cell as considered by others in the litera
mentioned before!. In the band structure associated with
supercell, we can analyze how degeneracies are formed
how to break them to create band gaps.

The point group symmetry of a photonic crystal is defin
with respect to the point with the highest symmetry. F
example, the point group symmetry is not changed by add
columns at the corners of the unit cell for the 2D photon
crystals considered in@15# ~they belong to the same poin
group symmetryC4v). We notice that the translation grou
symmetry does not change either. Thus the space group s
metry of the photonic crystal does not change at all althou
the smallest unit cell must include two rods after the ad
tional rods are added. It may be hard to understand the
generacy breaking for theH polarization at pointM of the
second and third bands~as shown in@15#! without careful
analysis of the electromagnetic field distribution. However
we study the band structure associated with a supercell,
lifting of the degeneracy and the creation of PBGs of su
photonic crystals can be understood with some tricks e
when the space group symmetry of the photonic crystal d
not change. For the above example, the photonic crystal w
additional columns at the corners can be treated as the r
of changing the translation group symmetry~keeping the
point group symmetry unchanged! from another photonic
crystal with additional columns having the same size as
original column@as shown below in Fig. 3~a! for the square
column case#, which also belongs toC4v point group sym-
metry. The present method provides another view for und
©2003 The American Physical Society12-1
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standing the idea of additional columns. Not surprising
many known photonic crystal structures such as the ch
board structure@19,20#, a square lattice of square rods@11#,
and even a triangular air hole structure@3# can be somewha
understood from this point of view~cf. the numerical ex-
ample associated with Figs. 3–6 below!. By using such a
degeneracy analysis associated with a supercell, some s
tures with large band gaps are also found in the present
per.

II. THEOREMS FOR DEGENERACIES IN THE BAND
STRUCTURE ASSOCIATED WITH A SUPER CELL

The unit cell we consider here refers to the smallest p
odic region in a photonic crystal. If the periodic region i
cludes more than one unit cell, e.g., two unit cells, it is cal
a supercell. First we want to study the relation between
band structure associated with the supercell and the orig
band structure~associated with the unit cell!.

In general, we consider a three-dimensional~3D! photonic
crystal with primitive lattice vectorsa1, a2, anda3. The as-
sociated primitive reciprocal vectorsb1, b2 andb3 are deter-
mined by

bi52p

(
j ,k51

3

e i jkaj3ak

a1•~a23a3!
, ~1!

wheree i jk is the 3D Levi-Civitàcompletely antisymmetric
symbol. The complete set of reciprocal lattice vectors is w
ten as$GuG5 l 1b11 l 2b21 l 3b3%, where (l 1 ,l 2 ,l 3) are inte-
gers. We denote the first Brillouin zone formed by these
ciprocal lattice vectors$G% as zone A.

The primitive lattice vectors for a supercell are the line
combinations~with integer coefficients! of the primitive lat-
tice vectors for the unit cell, i.e.,a8i5( j 51

3 Ni j aj , i , j
51,2,3, whereNi j are integers. The corresponding primitiv
reciprocal vectors for the supercell are determined bybi8
52p(( j ,k51

3 e i jkaj83ak8)/@a18•(a283a38)#. The integersNi j

form a 333 transform matrix with a positive determina
det(N)[M.0.

Since

bi•aj852p

(
m,n51

3

e imnam3an

a1•~a23a3!
•(

l 51

3

Njl al52pNji ~2!

it follows from a8i•b8j52pd i j that

bi5(
j 51

3

Nji bj85(
j 51

3

Ni j
T bj8 , ~3!

where the superscriptT denotes the matrix transposition. Th
set of reciprocal lattice vectors associated with the super
is $G8uG85( j 51

3 njb8j%. Since G5( i 51
3 nibi

5( i , j 51
3 niNi j

T b8j , one sees that$G% is a subset of$G8%.
Note that the elements of$G% and $G8% are the integer grid
points~they do not fill any continuous space! formed by the
02661
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corresponding reciprocal lattice vectors. We denote the
Brillouin zone formed by the reciprocal vectors$G8% as zone
B.

Lemma.There exist a subset$Ḡ% of $G8%, which satisfies
the following conditions.

~i! $Ḡ%,$G8% and$Ḡ%ù$G%50.
~ii ! There areM elements in the set$Ḡ% (M is the deter-

minant of the matrixN) and the difference of any two o
them does not belong to$G%, i.e., (Ḡ12Ḡ2)¹$G%.

~iii ! Any G8P$G8% can be expressed as

G85Ḡ1G, ~4!

whereGP$G%,ḠP$Ḡ%.
The proof and a way to find the set$Ḡ% are given in the

Appendix.
If we define the addition of vectors as multiplication

group theory, we can take$G8% as a group and$G% as a
subgroup. Then the vector0 is the unit element of the group
From group theory, one knows that$G8% is the union of all
the cosets of the set$G%. The subset$Ḡ% is used to give the
cosets.

With these reciprocal vectors, each eigenstate of the e
tromagnetic field componentHk ~with the wave vectork in
the first Brillouin zone! in the photonic crystal can be ex
pressed in terms of the following Bloch series@10#:

Hk~r !5eik•r(
G

HGeiG•r. ~5!

The field componentHk satisfies the following equation:

QHk5
vk

2

c2
Hk , ~6!

where the operatorQ can be easily derived from Maxwell’s
equations, andc is the speed of light.

For any wave vectork in the k space of a photonic crys
tal, one can find a wave vector in the first Brillouin zone th
has the same eigenstate. The difference between the
wave vectors should be a reciprocal vector. Therefore,
any wave vectork, there exists aGP$G% so that

k15k2G ~7!

is in zone A~associated with the unit cell! and aG8P$G8% so
that

k25k2G8 ~8!

is in zone B~associated with the supercell!. We call k1 ~in
zone A! the counterpoint ofk2 ~in zone B! for the same
photonic crystal. They denote the same eigenstate in the
ciprocal vector spaces associated with the unit cell and
supercell, respectively.

For a fixedk2PB, we define the set$K1uK15k21Ḡ, for
all ḠP$Ḡ%%k2

. Clearly, there areM elements in$K1%. Since
not all of theseM elements are in zone A, we can force ea
2-2
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DEGENERACY ANALYSIS FOR A SUPERCELL OF A . . . PHYSICAL REVIEW E67, 026612 ~2003!
of them inside zone A by subtracting an appropriate recip
cal vector GK1

P$G%. Thus, we define a set$k1uk15K̃1

[K12GK1
in A for all K1P$K1%k2

%k2
. Obviously $k1%k2

containsM points inside zone A.
Theorem 1
~i! The M elements in$k1%k2

are the counterpoints ofk2.
They areM different points in zone A.

~ii ! All M eigenstates withM wave vectors in$k1%k2
~as-

sociated with the unit cell! correspond toM eigenstates with
one wave vectork2 in zone B~associated with the supercell!.

~iii ! Each band in the band structure associated with
unit cell will split into M bands in the band structure asso
ated with the supercell.

Proof.For any wave vectork in k space,k1 andk2 are the
counterpoints in zone A and zone B, respectively. From E
~4!, ~7!, and~8!, one has

k5k21G85k11G, ~9!

k15k21G82G

5k21Ḡ1G12G

[k21Ḡ1G2

5K11G2 . ~10!

Sincek1 is in zoneA, it follows from the definition thatk1
P$k1%k2

~hereGK1
52G2). Therefore, for any wave vecto

which has a counterpointk2 in zone B, its counterpoint in
zone A must belong to$k1%k2

. On the other hand, all the

elements in$k1%k2
for all possibleG8 ~corresponding to all

possibleḠP$Ḡ%) in Eq. ~10! are all counterpoints ofk2.
Therefore, the elements in the set$k1%k2

are exactly all the

counterpoints ofk2.
Consider two differentḠ1 ,Ḡ2P$Ḡ%. Correspondingly,

we haveK15k21Ḡ1 andK25k21Ḡ2. From the definition
we haveK̃12K̃25K12GK1

2(K22GK2
)5Ḡ12Ḡ22(GK1

2GK2
). Since Ḡ12Ḡ2¹$G% and GK1

2GK2
P$G%, we

know that Ḡ12Ḡ2 and GK1
2GK2

are different, i.e.,Ḡ1

2Ḡ22(GK1
2GK2

)Þ0, which immediately givesK̃12K̃2

Þ0. This proves thatK̃1 and K̃2 are two different points in
zone A. Therefore, the elements in$k1%k2

are M different
points.

Let Hk1
be the eigenstate for a wave vector in the

$k1%k2
associated with the unit cell. From Eqs.~5! and ~10!,

one has

Hk1
~r !5eik1•r(

G
HGeiG•r

5ei (k21Ḡ1G2)•r(
G

HGeiG•r
02661
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5eik2•r(
G

HGei (G1Ḡ1G2)•r

5eik2•r(
G8

HG8e
iG8•r[Hk2

8 ~r !, ~11!

whereHk2
8 is the same eigenstate~with the same field distri-

bution! but for the wave vectork2 in zone B~associated with
the supercell!. Therefore, allM eigenstates withM wave vec-
tors in $k1%k2

~associated with the unit cell! can be repre-

sented byM eigenstates with one wave vectork2 in zone A
~associated with the supercell!. The M points of k1 on any
band in the band structure associated with the unit cell w
be onM bands for onek2 value in the band structure ass
ciated with the supercell. Generally speaking, one band
the band structure associated with the unit cell will split in
M bands~which may overlap partially and form degenera
eigenstates! in the band structure associated with the sup
cell. The theorem is thus proved.

Theorem 2.If a photonic crystal has some kind of poin
group symmetry, the eigenstates at the edge of the first B
louin zone B will be degenerate in the band structure as
ciated with the supercell. The degree of the degeneracy
pends on both the determinantM of the transform matrixN
and the point group symmetry of the photonic crystal.

Proof. For a wave vectork2 at the edge of zone B, in
addition tok15k210 ~corresponding toḠ150) being one
of its counterpoints at the edge of zone B, it may have
other counterpointk185K12GK1

~with K15k21Ḡ2) located

somewhere else at the edge of zone B. For nonzeroḠ only
those points at the edge of zone B may have counterpo
still at the edge of zone B and the counterpoints for tho
points inside zone B will be outside zone B~but still inside A
according to the definition of counterpoints; note that zone
is inside zone A!. The wave vectorsk1 andk18 correspond to
the same wave vectork2 in zone B associated with the su
percell. Sometimes there exists a symmetric operationa
~which can be represented by a matrix for coordinate tra
formation; then one hasa215aT) and the associated opera
tor T(a) @with T(a) f (r )5 f (a21r )] for the photonic crystal
such that ak185k1 and T(a)Q(r )5Q(a21r )T(a)
5Q(r )T(a). Assume thatHk1

and Hk
18

are the eigenstate

for these two wave vectors, i.e.,QHk1
5vk1

2 /c2Hk1
and

QHk81
5vk

2
18/c

2Hk
18
. Since

T~a!Hk
18
~r !5Hk81

~a21r !5Hak
18
~r !5Hk1

~r !, ~12!

we have

QHk1
5QT~a!Hk

18
5T~a!QHk81

5
vk

2
18

c2
T~a!Hk81

5
vk

2
18

c2
Hk1

, ~13!
2-3
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WU, ZHUANG, AND HE PHYSICAL REVIEW E67, 026612 ~2003!
we havevk1
5vk

18
. Therefore,Hk1

andHk
18

are two different

eigenstates~for different wave vectorsk1 and k18) with the
same eigenvalue. In the band structure associated with
supercell, these two eigenstates are located at two band
have the same wave vectork2 and the same eigenvalue
Thus, they are degenerate states. Since we do not assum
specific form forQ in the above proof, the theorem is val
in any dimensional space~and for any polarization in the 2D
case!.

In the next section, we will illustrate these degenera
theorems with some numerical examples, use the degene
analysis to explain PBGs for some known 2D photonic cr
tals, and create large band gaps by breaking the symm
properties of the photonic crystal.

III. NUMERICAL RESULTS

First we give a one-dimensional example. Figure 1 i
1D photonic crystal consisting of alternating layers of ma
rials with two different dielectric constants («1513 and«2
51). We can select a periodic region~a supercell! to include
two unit cells as shown in Fig. 1~a!. The band structure as
sociated with the unit cell and the band structure associ
with the supercell~with N52) are given in the same figur
@Fig. 2~a!#, where the frequency and the wave vector a
normalized with the same constanta51 in order to make
them comparable. For this case, we have$G%[$Ḡ1 ,Ḡ2%
5$0,0.5(2p/a)% andM52. From Fig. 2~a! one sees that the
eigenvalues~associated with the original unit cell! for the
wave vectors outside the first Brillouin zone B~associated
with the supercell! have their counterpoints in zone B in th
band structure associated with the supercell. As expec
each band~solid line! associated with the unit cell corre
sponds to two bands~dashed lines! associated with the su
percell. Since the center point of the supercell in Fig. 1~a!
is mirror symmetric, one hasa521. At the edge of

FIG. 1. A 1D photonic crystal consisting of alternating layers
two different materials.~a! The supercell~including two unit cells!
of the photonic crystal.~b! The symmetry of the supercell is broke
~by changing the widths of the two dielectric layers while keep
the positions of both unchanged! to form a unit cell for a new
photonic crystal.
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zone B, the two wave vectorsk1850.25(2p/a) and
k1520.25(2p/a)5ak18 correspond to the same wave ve

tor k2520.25(2p/a) ~note thatk21Ḡ15k1 ,k21Ḡ25k18).
Thus, these two eigenstates are degenerate in the band s
ture associated with the supercell. Each eigenstate ak
560.25(2p/a) is formed by two degenerate states in t
band structure associated with the supercell. If one breaks
point group symmetry with respect to the center point of
supercell of the photonic crystal by changing the size of
inclusion medium, one obtains a new photonic crystal
shown in Fig. 1~b!. Sine the resulting photonic crystal is
still mirror symmetric with respect to the center point of a
inclusion layer, the symmetry breaking with respect to t
center point of the supercell does not change the point gr
symmetry of the photonic crystal as a whole. However,

f

FIG. 2. The corresponding band structures of the 1D photo
crystals with«1513, «251. ~a! The solid lines are for the band
structure associated with the unit cell and the dashed lines give
band structure associated with the supercell. Here we choosb
52a and d50.5a for Fig. 1~a!. ~b! The solid lines give the band
structure for a new photonic crystal with the unit cell shown F
1~b! ~here we choosed150.3a andd250.7a). The dashed lines are
for the band structure for Fig. 1~a! before the symmetry of the
supercell is broken.
2-4
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DEGENERACY ANALYSIS FOR A SUPERCELL OF A . . . PHYSICAL REVIEW E67, 026612 ~2003!
translation group symmetry changes due to the symm
breaking, and this leads to a larger unit cell. The correspo
ing transform matrix between the supercell and the new
cell changes fromN52 to N51. The band structure is
shown by the solid lines in Fig. 2~b!, where one sees that th
degeneracy disappears~since M51 for this new photonic
crystal and consequently there is only one counterpoint
each wave vector in the Brillouin zone! and more band gap
appear.

For the 2D case, if the dielectric inclusions have rect
gular shapes, we can employ the plane wave expan
method with the inverse rule@21# to calculate the band struc
ture. It is shown in@21,22# that this method with 225 plan
waves can give more accurate results than a conventi
plane wave expansion method with even 1681 plane wa
In our calculations, we use this method with 289 plane wa
and the error in the band structure is less than 0.5%.

As an example, we choose 232 unit cells as the supe
cell. Then we haveNT5(0

2
2
0), which corresponds to$Ḡ%

5$0,b18 ,b28 ,b181b28% ~see the Appendix for a derivation for
general case!. Figure 3~a! shows a simple square lattice o
square dielectric rods. Alumina is chosen as the dielec
medium and thus«58.9. The filling factor is set tof
50.47. Figure 4~a! gives the band structure associated w
the supercell. Each band~associated with the unit cell! has
split into four bands in the band structure associated with

FIG. 3. The case for the square lattice of square dielectric ro
~a! The supercell including four unit cells.~b! The symmetry of the
supercell is broken as two square rods increase in size and the
two rods decrease in size. The symmetry-broken superce
marked by the thick solid lines.~c! The first Brillouin zone A
~marked by the dashed lines! associated with the original unit ce
and the first Brillouin zone B~marked by the solid lines! associated
with the supercell of~a!. The first Brillouin zone C associated wit
the new unit cell@marked by the dashed lines of~b!# of the new
photonic crystal of~b! is marked by the dotted lines.G,X,J,M are
the symmetry points.
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FIG. 4. The band structures associated with Fig. 3 forf
50.47,«58.9. The solid lines denote theH polarization case and
the dashed lines are for theE polarization case. They are calculate
by the plane wave expansion method~with the inverse rule! with
289 plane waves for~a! b50, i.e., a simple square lattice of squa
rods; ~b! b51, i.e., the case of the chessboard. The absolute b
gapDv/vc50.07 appears atvc50.605(2pc/a). ~c! The band gap
map for 0<b<1.
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WU, ZHUANG, AND HE PHYSICAL REVIEW E67, 026612 ~2003!
supercell. The point group symmetry isC4v . We use the two
mirror symmetriesa15(0

21
1
0) and a25(0

1
21
0 ) to analyze

the degeneracy here. The eigenstates with wave vecto
the four corners~e.g., pointsX andM ) of the Brillouin zone
B have fourfold degeneracy and the eigenstates with w
vectors on two opposite edges are of twofold degener
under these two symmetry operations. Thus, in the b
structure associated with the supercell one can see that
are four-fold degeneracies at theX and M points and there
are also twofold accidental degeneracies for the four s
bands~and thus one sees only three bands! in the regionG
2X. TheE polarization and theH polarization have similar
behaviors of degeneracy.

In the supercell, both the size and the position of
inclusions can be changed to break the point symmetry w
respect to the center point of the supercell. Since the b
structure is more sensitive to the inclusion size@9#, the size
of the inclusions will influence the band structure sign
cantly. In our first example, the symmetry is broken as t
square rods increase in size and the other two rods decr
in size in order to keep the filling factorf 50.47 unchanged
In the resulting photonic crystal shown in Fig. 3~b!, the
squares rotate through a 45° angle to form a chessb
structure in the new unit cell denoted by thickened lines
Fig. 3~b! after the symmetry is broken. The ratio of the si
lengths between the smaller rods and the larger rods
2b with 0<b<1. When 0,b,1, it is just the case with
the smaller square rods being added at the corners of
simple unit cell. Whenb51, the side length of the smalle
rods is 0 and only two larger rods exist in the supercell. T
structure is exactly the chessboard structure reported in@20#.

Since the symmetry with respect to the center po
~which has the highest symmetry! of each square is stillC4v
for 0,b<1 @see Fig. 3~b!#, the point group symmetry of the
photonic crystal is stillC4v . Similar to the 1D case, the
symmetry breaking with respect to the center point of
supercell changes the translation symmetry of the photo
crystal. The corresponding transform matrixN between the
supercell and the unit cell changes fromNT5(0

2
2
0) to NT

5(0
1

21
0 ) as the unit cell changes to a larger one. Therefo

the degeneracies of the band structure associated with
supercell will also change. We take the chessboard (b51) as
an example to study its band structure@shown in Fig. 4~b!#.
From Fig. 4~b! one sees clearly that some degeneracies~in-
cluding the usual degeneracies at the edge of zone B an
accidental degeneracies for points atG-X) are lifted for both
the E polarization and theH polarization. An absolute ban
gap appears where the degeneracies are lifted at the
points of zone B. To understand this situation, after the u
cell of the photonic crystal in Fig. 3~b! changes to a large
one@denoted by the dashed line in Fig. 3~b!#, the correspond-
ing first Brillouin zone of this new photonic crystal is de
noted as zone C in Fig. 3~c!. The transform matrix betwee
zone C and zone A isNT5(21

1
1
1), which corresponds toM

5det(NT)52,$Ḡ%5$0,b̄28%5$0,b28% according to the Appen
dix. For the point group symmetry ofC4v , we can analyze
the degeneracy with the two mirror symmetry operatorsa3
5a1 anda45a2. The eigenstates with two wave vectors
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the two opposite edges in the Brillouin zone B are twofo
degenerate states under these two symmetry operations
degeneracy becomes only twofold at pointsX andM now ~as
compared to the fourfold degeneracy in the band struc
associated with the supercell! sinceuNTu52 here. Therefore,
the degeneracies must disappear at theX and M points and
each group of four bands in Fig. 4~a! breaks at pointsX and
M to form two groups with two bands in each group@see Fig.
4~b!#. An absolute band gapDv/vc50.070 appears at the
midfrequency~of the band gap! v5vc50.605(2pc/a). The
large absolute band gaps can be explained by the pre
theory of supercells.

Figure 4~c! is the corresponding gap map whenb in-
creases from 0 to 1. The situation is similar to the ca
considered in@15# ~the only difference is that here we us
square dielectric rods instead of round air holes!. To make a
map for the actual procedure of degeneracy breaking,
take b as the varying parameter. A photonic crystal wi
additional smaller squares (0,b,1; we call it case 2! is
considered in@15# as a result of adding the smaller squares
corners of the square lattice of the square rods (b51; we
call it case 3!. Here, we take both case 2 and case 3 as
results of changing the translation symmetry of the photo
crystal when the additional square is of equal size (b50; we
call it case 1!. They have the same degeneracy break
properties as the chessboard structure mentioned ab
Thus, large absolute band gaps can be expected by choo
an appropriate value ofb. Whenb>0.76, an absolute ban
gap appears aroundv50.6(2pc/a). It is more useful to use
Dv/vc to describe the PBGs due to the scaling property o
photonic crystal. In the band structure associated with
supercell,Dv/vc remains almost unchanged. A maximu
Dv/vc50.071 occurs whenb50.93.

Following the same procedure, from the chessboard p
tonic crystal shown in Fig. 5~a! we can obtain a photonic
crystal formed with square dielectric rods of two differe
sizes@see Fig. 5~b!#. The ratio of the side lengths betwee
the smaller rods and the larger rods is 12b with 0<b<1.
Figure 6 gives the gap map when the filling ratio is fixed
f 50.35 with 0<b<1 and the inclusion material has a d
electric constant«511.4. From Fig. 6, one sees that there
no absolute band gap for the chessboard case~whenb50)
in the frequency range of 0<v<2pc/a. When b51, the
structure becomes a simple square lattice of square rod
the same size@see Fig. 5~c!#, which has an absolute ban
gap Dv/vc50.0453 with the midfrequency vc
50.7231(2pc/a). It is thus not surprising that with appro
priate parameters an absolute photonic band gap exists
the 2D square lattice of square dielectric rods as conside
in @11#. The maximal gap ofDv/vc50.0717~much larger
than in the case of inclusions with a single size! occurs at
v5vc50.7449(2pc/a) when the ratio of the size length
for the two inclusion rods isb50.31.

A triangular lattice of air columns@see Fig. 7~b!# has been
found to have a large absolute band gap. The rule of thu
@2# can be employed to give a reasonable explanation. H
we explain how a gap appears from the viewpoint of t
changes of translation symmetry. Although the triangular
tice has high symmetry, it can be viewed as the result
2-6
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DEGENERACY ANALYSIS FOR A SUPERCELL OF A . . . PHYSICAL REVIEW E67, 026612 ~2003!
symmetry breaking from a supercell of another photo
crystal shown in Fig. 7~a!. From Figs. 8~a! and 8~b! we can
see clearly how the degeneracies are lifted at the edge p
X andM @cf. Fig. 7~c!# and an absolute band gap is created
the band structure associated with the supercell when
symmetry of the supercell is broken.

As a final numerical example, we break the symmetry
the supercell shown in Fig. 9~a! by changing both sizes~for
all nine square rods! and positions~except for the centra
square rod! of the square rods, but with the dielectric fillin
factor f fixed. Figure 9~b! is the resulting structure. The ban
structure with parameters p150.194a,p250.236a,p3

FIG. 5. The case of the chessboard structure.~a! The supercell
including four unit cells.~b! The symmetry of the supercell is bro
ken when two square rods increase in size and the other two sq
rods decrease in size.~c! The photonic crystal when the size of th
smaller square rods becomes zero. The structure becomes a s
square lattice of square rods.

FIG. 6. The gap map for Fig. 5 with 0<b<1 (12b is the side
length ratio of the smaller squares to the larger ones!.
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50.374,f 50.5132 is shown in Fig. 10. From this figure on
sees that the degeneracies are lifted at the edge points
two absolute band gaps are created at higher normalized
quencies, namely, a large gapDv150.072(2pc/a) at vc
51.291(2pc/a) and another gapDv250.043 at vc
51.142(2pc/a). Note that it is easier to fabricate a photon
crystal with the absolute band gap occurring at a higher n
malized frequency.

IV. CONCLUSION

In the present paper, we have presented a method of
plaining or creating photonic band gaps through analyz
the degeneracy of the band structure associated with a su
cell. The band structure associated with a supercell of a p
tonic crystal has degeneracies at the edge of the first B
louin zone if the photonic crystal has some kind of po
group symmetry. We analyzed these degeneracies and
sented two theorems on degeneracies in the band stru
associated with the supercell. These theorems and the a
sis are valid in any dimensional space~and for any polariza-
tion in the 2D case! and do not require investigation of th
field distribution. Photonic band gaps can be created thro
lifting these degeneracies by changing the translation gr
symmetry of the photonic crystal, which consequen
changes the transform matrix between the supercell and
smallest unit cell. Many numerical examples have be
given in the present paper to illustrate this. In the 2D ca

are

ple

FIG. 7. The case for a rectangular lattice of air holes. The ra
of the two side lengths isA3. ~a! The supercell including four unit
cells. ~b! The symmetry of the supercell is broken when two dia
onal air holes are reduced in size to zero and the other two diag
air holes increase in size. The symmetry-broken supercell is ma
by the thick solid lines.~c! The first Brillouin zone A~marked by
the dashed lines! associated with the original unit cell and the fir
Brillouin zone B ~marked by the solid lines! associated with the
supercell of~a!. The first Brillouin zone C associated with the ne
unit cell @marked by the dashed lines of~b!# of the new photonic
crystal of~b! is marked by the dotted lines.G,X,J,M are the sym-
metry points.
2-7
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WU, ZHUANG, AND HE PHYSICAL REVIEW E67, 026612 ~2003!
the E polarization and theH polarization have the sam
properties of degeneracies. The existence of photonic b
gaps for many known 2D photonic crystals has been
plained through a degeneracy analysis of the band struc
associated with the supercell. Some photonic crystal st
tures with large or multiple band gaps have also been fo
by breaking the symmetry of the supercell.
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APPENDIX THE PROOF OF THE LEMMA
AND A METHOD TO FIND THE SET ˆḠ‰

We can take three kinds of primary transformations
the integer matrixN while keeping the absolute value o
det(N) unchanged. The first transformation is to multiply
column or row by61. The second transformation is to in
terchange two columns or rows. The third transformation
to add one column or row tok times another column or row

n-

.

FIG. 9. Symmetry breaking of a supercell by changing both
sizes and positions of the inclusions.~a! The supercell including
four unit cells.~b! The symmetry of the supercell is broken whe
both the sizes~for all nine square rods! and the positions~except for
the central square rod! of the square rods are changed~but with the
dielectric filling factorf fixed!.

FIG. 10. The band structure associated with the symme
broken supercell shown in Fig. 9~b! with f 50.5132 and«511.4.
The solid lines denote theH polarization case and the dashed lin
are for the E polarization case. The other parameters arep1

50.194a, p250.236a, p350.374a. Through the symmetry break
ing of the supercell, one obtains a band structure with two abso
band gaps, namely, one gapDv150.0724 at v1

51.2905(2pc/a), and another gap Dv250.0427 at v2

51.1424(2pc/a).
2-8
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DEGENERACY ANALYSIS FOR A SUPERCELL OF A . . . PHYSICAL REVIEW E67, 026612 ~2003!
(k is an integer!. Each primary transformation can be e
pressed with a left or right multiplication of the matrixN by
an integer matrix. Furthermore, the determinants of th
integer matrices~associated with these primary transform
tions! are 1 and their inverses are also integer matrices.
der these primary transformations@23#, the determinant of
the matrix is kept unchanged and the resulted matrixN8 is
still an integer matrix.

Here we give a specific procedure for obtaining a dia
nal matrixN85D by taking these transformations. First, w
interchange the column or the row with the second kind
transformation to makeN11 the minimal amongN1i and
Ni1 , i 51,2,3. Then we makeN11 positive~if it is negative!
with the first kind of transformation. If all the integersN1i8
andNi18 ( i 51,2,3) are divisible byN118 , we can make allN1i8
and Ni18 ~exceptN118 ) zero by using the third kind of trans
formation. If any ofN1i8 or Ni18 is not divisible byN118 , its
column or row can be subtracted fromk timesN11 so that the
remaining component at theN1i8 or Ni18 position becomes
smaller thanN118 . The column or row is then interchange
with the first column or the first row~with N11) to makeN118
smaller. This can be done repeatedly until allN1i8 andNi18 are
divisible by N118 or N118 51. Then we can make allN1i8 and
Ni18 but N118 zero. Applying a similar method toN228 , we can
makeN238 5N328 50. Therefore, the integer matrixNT is di-
agonalized as

NT5P21DQ,
~A1!

D5S d1 0 0

0 d2 0

0 0 d3

D ,

whereD, P21, Q are all integer matrices. HereP21 is the
inverse of P and det(P21)5det(Q)51. Thus, we have
det(D)5d1d2d35det(NT)5M .

From Eq.~5! we have

bi5(
j 51

3

Ni j
T bj85(

j 51

3

~P21DQ! i j bj8 . ~A2!

We can define two other basic vectorsb̄ and b̄8 by b̄i

5( j 51
3 Pi j bj and b̄i85( j 51

3 Qi j b8j . Below we find $Ḡ% in

terms of the vectorsb̄i8 . It follows from Eq. ~14! that

b̄i5(
j 51

3

Di j b̄j85(
j 51

3

d i j dj b̄j8 . ~A3!

Since
02661
e
-
n-

-

f

(
i 51

3

nibi5 (
i , j 51

3

ni P
21

i j b̄j5(
j 51

3

nj8b̄jPH (
i 51

3

ni b̄iJ ,

~A4!

(
i 51

3

ni b̄i5 (
i , j 51

3

ni Pi j bj5(
j 51

3

nj8bjPH (
i 51

3

nibiJ , ~A5!

we see that the set$( i 51
3 ni b̄i%5$( i 51

3 nibi% (ni ,ni8 are arbi-
trary integers!. Similarly, we can show that

H (
i 51

3

ni b̄i8J 5H (
i 51

3

nibi8J . ~A6!

Therefore, the sets$G‰ and $G8‰ can be written as

$GuG5( i 51
3 ni b̄i5( j 51

3 nidi b̄i8% and$G8uG85( i 51
3 ni b̄i8%.

Since any integerni can be written asni5 l idi1mI with
0<mi<di21, we see that the set$ḠuḠ5( i 51

3 mi b̄i8 ,mi

50, . . . ,di21%. Obviously, we have$Ḡ%ù$G%50 and there
ared1d2d35M possible combinations of (m1 ,m2 ,m3) for Ḡ
~i.e., the set$Ḡ% hasM elements!. Also, for any two of them,
e.g., Ḡ15( i 51

3 mi b̄i8 , Ḡ25( i 51
3 mi8b̄i8 , 0<mi<di21, 0

<mi8<di21, the difference Ḡ12Ḡ25( i 51
3 mi b̄i8

2( i 51
3 mi8b̄i85( i 51

3 (mi2mi8)b̄i8 does not belong to$G%
since 0<umi2mi8u<di21.

Obviously, anyG8P$G8% can be written as

G85(
i 51

3

ni b̄i85(
i 51

3

~ l idi b̄i81mi b̄i8!

5G1Ḡ, ~A7!

whereGP$G% andḠP$Ḡ%.
As a numerical example in the 2D case, we can cons

the supercell indicated by the thick line in Fig. 3~b! where
the unit cell is indicated by the dashed line~the supercell
includes two unit cells!. Obviously, we havea815a11a2 and
a825a12a2. Then we haveNT5(21

1
1
1). Following the

above procedure, we obtainNT5(21
1

1
1)5(1

1
1
0)(0

1
2
0)

3(0
1

1
21), D5(0

1
2
0 ), P215 (1

1
1
0), (0

1
1
21 ), P5 (21

1
1
0 ), Q21

5(0
1

1
1). Therefore, we haved151, d252, and $Ḡ%

5$0,b̄28%5$0,b28%. SinceḠ12Ḡ25b28 in this special example
and we have the general form forG5n1b11n2b25n1(b18

1b28)1n2(2b181b28)5(n12n2)b181(n11n2)b28 , Ḡ12Ḡ2

P$G% will end up with n15n251/2 which is contradictory
to the requirement thatn1 andn2 are integers. Therefore, fo
this special example we also see thatḠ12Ḡ2¹$G%.
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